Investigation of Measurement Techniques for the Determination of the Dielectric Constant of Substrate Boards for Microwave Circuits

Presented by
Aik Loon Hoo
2252468

Supervised by
Prof. Dr.-Ing. K. Solbach
Outline

• Motivation
• Assumptions
• Method I : Capacitance Measurement.
• Method II : Full Sheet Resonance method.
• Method III : An Evaluation through a simple Microstrip Transmission Line Resonator.
• Total Results and Comparison.
• Conclusion
Motivation

• To investigate the measurement method for determination of relative dielectric constant of a substrate board:

• Example of substrate RO4003:
 - manufacturers’ result : \(3.38 \pm 0.05\)
 - recommended for use in circuit design: 3.55

- Three methods to be concerned here.
Assumptions

Stray electric field at the edge of the board.

(a) Air-filled laminate panel.

(b) Dielectric substrate filled laminate panel.
Assumptions

(a) Air-filled microstrip line with thickness of h.
(b) Air-filled laminate panel with thickness of d. ($d=2h$)
Assumptions

End-effect length Δl (method I)

- $\varepsilon_r = 1.0$ (Air)

Fringing Capacitance (method I)

Microstrip transmission line.

Treated as open-ended transmission line resonator (method III)

Characteristic Impedance, Z_c
Method I: Capacitance Measurement.

- Several methods to determine the stray electric field.
- It can be represented as a Fringing / Edge capacitor or an End-effect length Δl.
Method I : Capacitance Measurement.

Formula for the determination of the parallel-plate substrate board's capacitance $C_{\varepsilon r}$:

$$C_{\text{total/measured}} = \frac{\varepsilon_r \varepsilon_0 W \cdot L}{h} + 2C_{e1/f} + 2C_{e2/f} + C_{\varepsilon r}$$
Method I: Capacitance Measurement.

Determination of relative dielectric constant of the laminate panels (Inclusion of stray fields):

\[\varepsilon_r = \frac{C_{\varepsilon_r} h}{\varepsilon_0 A} \]
Method II: Full Sheet Resonance method.

- Connecting probes

Modified wooden clothespin

1.5pF capacitor
Method II : Full Sheet Resonance method.

• Setup

Substrate Board (Test sample)

Probe

2-port

Probes

Connection of test sample of Substrate board to the network analyzer.

Network Analyzer
Method II: Full Sheet Resonance method.

- Determination of relative dielectric constant the substrate boards:

\[\varepsilon_r = \frac{C_o^2}{4f_{mn}^2} \cdot \left\{ \left(\frac{m}{L} \right)^2 + \left(\frac{n}{W} \right)^2 \right\} \]

- \(C_o \): Speed of light. (2.9979x10^8 ms\(^{-1}\))
- \(f_{mn} \): Resonance frequency.
- \((m,n) \): Corresponding resonance mode.
- \(W \): Width of the conducting.
- \(L \): Length of the microstrip line.
This method has to be carried out in few directions for the resonance frequencies measurement and the matching of resonance modes of \(m \) along the length and \(n \) along the width.
Method II : Full Sheet Resonance method.

• **Example results of RO4350 test sample:**

• Measured dimensions:
 - Length : 457.83 mm
 - Width : 305.33 mm

• Modified dimensions with inclusion of stray fields by end-effect length (Dimensions have been enlarged):
 - Length : 460.162 mm
 - Width : 307.788 mm
Method II: Full Sheet Resonance method.

• Example results of RO4350 test sample:

<table>
<thead>
<tr>
<th>Peaks</th>
<th>f_0 (MHz)</th>
<th>modes</th>
<th>Dielectric Constant, ε_r</th>
<th>Dielectric Constant, ε_r (Inclusion of stray field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>170.7</td>
<td>(1,0)</td>
<td>3.68</td>
<td>3.64</td>
</tr>
<tr>
<td>2</td>
<td>255.8</td>
<td>(0,1)</td>
<td>3.68</td>
<td>3.63</td>
</tr>
<tr>
<td>3</td>
<td>308.5</td>
<td>(1,1)</td>
<td>3.66</td>
<td>3.61</td>
</tr>
<tr>
<td>4</td>
<td>341.9</td>
<td>(2,0)</td>
<td>3.67</td>
<td>3.63</td>
</tr>
<tr>
<td>5</td>
<td>428.4</td>
<td>(2,1)</td>
<td>3.65</td>
<td>3.61</td>
</tr>
<tr>
<td>6</td>
<td>511.5</td>
<td>(0,2)</td>
<td>3.69</td>
<td>3.63</td>
</tr>
<tr>
<td>7</td>
<td>513.0</td>
<td>(3,0)</td>
<td>3.67</td>
<td>3.63</td>
</tr>
<tr>
<td>8</td>
<td>540.4</td>
<td>(1,2)</td>
<td>3.67</td>
<td>3.61</td>
</tr>
</tbody>
</table>

Average: 3.67

• Manufacturer’s results for RO4350:
 3.48±0.05
Method II : Full Sheet Resonance method.

Graph of ε_r versus f_0 (MHz) of Sample RO4350

- A piece of substrate has been cut out and treated as a simple microstrip transmission line and open-ended transmission line resonator.

- The measured resonance frequency through S21measurement will be used to tune the corresponding dielectric constant of the substrate in a simulation (ADS).

- A simple Microstrip Transmission Line Resonator has been designed with aid of a simulation(ADS).
- Fabrication of the resonator. (Sample RO4350)
- S21 measurement has been carry out on the resonator.
- Measured resonance frequency will be used to tune the dielectric constant.

By bring near the probe to the strip line without touching it as creating a capacitive coupling to the measurement.

• The 1st peak of resonance frequency has been measured and recorded down. It’s 251.7 MHz of resonance frequency.

• It’s 3.674 of the relative dielectric constant of the substrate (RO4350).

• Manufacturer’s results for RO4350: 3.48±0.05.
Total results of all three methods

Graph results of relative dielectric constant for sample RO4350

Average dielectric constant : 3.70
All results and comparison

- **Test sample RO4350:**
 - Average dielectric constant of three methods: 3.70
- Manufacturer’s dielectric constant: 3.48±0.05
- Recommended for use in circuit design:
 - 3.66 (from datasheet)
Conclusion

• Average relative dielectric constant of substrate boards show an improvement result with inclusion of stray electric field through these measurement techniques compared to manufacturer’s results.

• It’s suggested to include the effect in the determination methods of relative dielectric constant.
Thank You for Your attention!
Extra Slides
Method II: Full Sheet Resonance method.

- Capacitive coupling:
 - Capacitive coupling is needed to obtain more precise results of resonance frequencies measurement.
 - The of resonance frequencies will be shifted at above magnitude of -20dB.
• Resonance frequencies of high capacitive coupling have been shifted for few kHz compared to low capacitive coupling.

• Hence, Some papers have been added to reduce the capacitive coupling, in order to get more precise result of resonance frequencies.

Example:

m1
Freq= \textbf{171.6MHz}
dB(S(2,1))= -34.033

m3
Freq= \textbf{172.2MHz}
dB(S(2,1))= -34.033

It is shifted few kHz of resonance frequency.
Capacitive coupling:

<table>
<thead>
<tr>
<th>1st peak (MHz)</th>
<th>dB(S(2,1))</th>
<th>2nd peak (MHz)</th>
<th>dB(S(2,1))</th>
<th>3rd peak (MHz)</th>
<th>dB(S(2,1))</th>
<th>C1(pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>174,22</td>
<td>-84,06</td>
<td>348,39</td>
<td>-53,83</td>
<td>522,51</td>
<td>-42,09</td>
<td>0,01</td>
</tr>
<tr>
<td>174,22</td>
<td>-72,96</td>
<td>348,39</td>
<td>-40,47</td>
<td>522,51</td>
<td>-45,30</td>
<td>0,02</td>
</tr>
<tr>
<td>174,22</td>
<td>-59,38</td>
<td>348,39</td>
<td>-42,04</td>
<td>522,51</td>
<td>-40,22</td>
<td>0,05</td>
</tr>
<tr>
<td>174,21</td>
<td>-47,82</td>
<td>348,38</td>
<td>-36,29</td>
<td>522,50</td>
<td>-17,33</td>
<td>0,10</td>
</tr>
<tr>
<td>174,21</td>
<td>-24,01</td>
<td>348,38</td>
<td>-16,38</td>
<td>522,49</td>
<td>-8,49</td>
<td>0,20</td>
</tr>
<tr>
<td>174,20</td>
<td>-11,08</td>
<td>348,36</td>
<td>-1,16</td>
<td>522,46</td>
<td>-2,02</td>
<td>0,50</td>
</tr>
<tr>
<td>174,19</td>
<td>-8,71</td>
<td>348,33</td>
<td>-0,47</td>
<td>522,42</td>
<td>-0,15</td>
<td>1,00</td>
</tr>
<tr>
<td>174,15</td>
<td>-1,36</td>
<td>348,27</td>
<td>-0,01</td>
<td>522,34</td>
<td>-0,01</td>
<td>2,00</td>
</tr>
<tr>
<td>174,12</td>
<td>-0,28</td>
<td>348,22</td>
<td>-0,01</td>
<td>522,28</td>
<td>0,00</td>
<td>3,00</td>
</tr>
</tbody>
</table>

Limitation of capacitive coupling for the corresponding resonance frequencies.
Total results of all three methods

- **Test sample RO4350:**

<table>
<thead>
<tr>
<th>RO4350</th>
<th>Test methods</th>
<th>Relative dielectric constant, ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method I(A)</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>Method I(B)</td>
<td>3.72</td>
</tr>
<tr>
<td></td>
<td>Method I(C)</td>
<td>3.73</td>
</tr>
<tr>
<td></td>
<td>Method II</td>
<td>3.62</td>
</tr>
<tr>
<td></td>
<td>Method III</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>3.70</td>
</tr>
</tbody>
</table>