Master Thesis

Control and Prediction of Scan Blindness Effects in Printed Planar Antenna Systems

Bahram Sanadgol

Universität Duisburg-Essen: Prof. Dr.-Ing. K. Solbach

Dipl.-Ing. Oliver Litschke, IMST GmbH
Presentation Outline

Blindness Problem

Prediction Methods

Control Mechanism

Printed Dipole

Microstrip Patch

Electrical Shielding

Waveguide Simulator

Bahram Sanadgol
Blindness Concept

Surface Wave on an Array

Scanning Array

- Null in Pattern
- Scan Coverage
- Big Mismatch in Input Impedance
- No Feeding Possible

\[\beta^2 = k_x^2 + k_y^2 \]

\[k_x = \left(\frac{2\pi m}{a} + k_0 u \right) \]

\[k_y = \left(\frac{2\pi n}{b} + k_0 v \right) \]

\[u = \sin \theta \cos \Phi \]
Surface Wave Circle Diagram

Scanning Part

\[\beta_{sw}^2 = \left(\frac{m}{d_x/\lambda} + u \right)^2 + \left(\frac{n}{d_y/\lambda} + v \right)^2 \]

- TM (TE) mode excitation
- \(X \rightarrow 0.55\lambda \)
- \(y \rightarrow 0.5 \lambda \) and \(\beta = 1.3 \)

Grid Spacing
- Blindness in Visible Space

Polarization Match
- Blind Spot

Bahram Sanadgol

11.06.2007
Scan Impedance Method and SEP

Perpendicular Lumped Port

Arrow entered in top view

Layer Arrow

Angle
- Easy to Calculate
- Size Dependent

Bahram Sanadgol

11.06.2007
Effective Propagation Constant

Surface Wave Excitation

TM

TE

Dielectric

Sender Probe

Receiving Probe

Ground Plane

P1
TM Mode β Calculation

1. The first mode is excited on the waveguide port.
2. Two simulations are needed to calculate β.
3. Blind spot is predicted with new effective β using classical method.

Transmitting Waveguide TE_{10}

Dipole
TE Mode β Calculation

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Mode</th>
<th>Ideal β</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate1</td>
<td>TM</td>
<td>1.1349</td>
<td>1.145</td>
</tr>
<tr>
<td>Substrate2</td>
<td>TM</td>
<td>1.6168</td>
<td>1.597</td>
</tr>
<tr>
<td>Substrate2</td>
<td>TE</td>
<td>1.1316</td>
<td>1.109</td>
</tr>
</tbody>
</table>
Printed Dipole

Graph showing E Field magnitude in dB versus angle in degrees.
Method Comparison for Dipole

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Substrate</th>
<th>Surface Wave</th>
<th>SEP</th>
<th>Scan Impedance</th>
<th>β Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49λ , E</td>
<td>Substrate1</td>
<td>64</td>
<td>63</td>
<td>71</td>
<td>66</td>
</tr>
<tr>
<td>0.7λ , E</td>
<td>Substrate1</td>
<td>17</td>
<td>17</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>0.49λ , E</td>
<td>Substrate2</td>
<td>25</td>
<td>24</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>0.49λ , H</td>
<td>Substrate2</td>
<td>65</td>
<td>66</td>
<td>51</td>
<td>58</td>
</tr>
<tr>
<td>0.6λ , E</td>
<td>Substrate2</td>
<td>3.5</td>
<td>3</td>
<td>14</td>
<td>15.5</td>
</tr>
<tr>
<td>0.6λ , H</td>
<td>Substrate2</td>
<td>32.4</td>
<td>31</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>
Arrays of Microstrip Patches

$\varepsilon = 3.48$

$h = 0.121\lambda$

$\beta = 1.2383$

Scan Element Pattern
Scan Resistance, E-plane

![Graph showing resistance versus angle (in degrees) for different values of d_x.]
Scan Resistance, H-plane

- Resistance Ohm ($R_{\text{ref}} = 250 \, \Omega$)

- θ in degree

- Lines for different values of λ_0:
 - $0.45 \lambda_0$
 - $0.55 \lambda_0$
 - $0.6 \lambda_0$
 - $0.5 \lambda_0$
Scan Reactance, H-plane

\[\text{Reactance, Ohm (} R_{\text{ref}} = 250 \Omega \text{)} \]

\[\theta \text{ in degree} \]

- \(d_y = 0.45 \lambda \)
- \(d_y = 0.5 \lambda \)
- \(d_y = 0.55 \lambda \)
- \(d_y = 0.6 \lambda \)
E-plane Farfield and Comparison

Element Spacing = 0.55 \lambda

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Surface Wave</th>
<th>SEP</th>
<th>Scan Impedance</th>
<th>\beta\text{ effective}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5\lambda</td>
<td>50</td>
<td>52</td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>0.55\lambda</td>
<td>35</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>0.6\lambda</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>26.5</td>
</tr>
</tbody>
</table>
Blindness Control

- Surface Wave Suppression
- Perturbing and PBG Idea
- Electrical Wall + Via

Diagram:
- Patch
- Top Layer of Filter
- Via

11.06.2007
Bahram Sanadgol
Wall’s Functionality

18 GHz

24 GHz

10 mW/m (+0 dB)
1.996 mW/m (-7 dB)
398 uW/m (-14 dB)
79.44 uW/m (-14 dB)
15.84 uW/m (-28 dB)
3.162 uW/m (-35 dB)

631 nw/m (-42 dB)
125.8 nw/m (-42 dB)
25.12 nw/m (-56 dB)
5.012 nw/m (-63 dB)
1000 pW/m (-70 dB)
Near Field Interference

Frequency Up-shift

Single Element Tuning

Match Improvement from Suppressed Surface Wave
Wall Effect on Blindness

Element Spacing = 0.55 λ

Grating Lobe at 55

β close to 1

Surface Wave is Suppressed

SEP Analysis

Blind spot is moved toward grating lobe.
Farfield Comparison

Element Spacing = 0.55 λ
Waveguide Simulator

Waveguide Mode

Plane Wave with Specific Angle 28°

One Polarization E-plane

One Frequency 24 GHz

Null Positions, Array Symmetry Plane

Waveguide Port S_{11}

TM_{11}

Element Port

Dipole Array, Spacing 0.5λ

3*3 on a substrate with $h=0.181\lambda$

Frequency in GHz
Farfield pattern of a linear array of 17 dipoles on a substrate with $\varepsilon=4.2$ from Scan Impedance Method.
Conclusion and Future Work

- Blindness prediction for dipoles and patches
- New method based on β calculations
- Blindness control
- Waveguide simulation as comparison
- β calculations for other single elements
- Optimized feeding network
- Another suppressing structures
Thank you for your attention!
Patch Serial Feeding

Why?
- Simple Feeding Network
- Easy to introduce phase shifters

Disadvantages
- Pin’s Spurious Radiation
- Amplitude Distribution

![Diagram showing electric field distribution with values]

- 4 kv/m (0 dB)
- 3.6 kv/m (-0.91 dB)
- 3.2 kv/m (-1.94 dB)
- 2.8 kv/m (-3.1 dB)
- 2.4 kv/m (-4.44 dB)
- 2 kv/m (-6.02 dB)
- 1.6 kv/m (-7.95 dB)
- 1.2 kv/m (-10.45 dB)
- 801 v/m (-13.97 dB)
- 401.2 v/m (-19.98 dB)
- 1.264 v/m (-70 dB)